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The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored
using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks.
Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor
cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemi-
sphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemi-
sphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are
lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical
expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to mini-
mize between-hemisphere connectivity and distribute domain-specific processing functions.
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Introduction
Hemispheric specialization is an organizing principle of the hu-
man brain that is hypothesized to contribute to fast, efficient
information processing (Levy, 1969; Ringo et al., 1994). The lat-
eralization of brain function has been investigated through study
of lateralized brain lesions (Milner, 1971), split-brain patients
(Gazzaniga, 2000), sodium amytal injection (Wada and Rasmus-
sen, 1960), intraoperative brain stimulation (Penfield and Jasper,
1954), and neuroimaging (Petersen et al., 1989; Desmond et al.,
1995). Brain expansion during evolution may contribute to
hemispheric specialization, although direct evidence relating
hemispheric specialization to size expansion is lacking. The hu-
man brain is triple the size of modern great apes (Preuss, 2011;
Sherwood et al., 2012). The cost of maintaining the physical con-
nections and the pressure for speed of signal transmission both
increase with brain volume. Hemispheric specialization therefore

may be the outcome of “competitive criteria of minimizing wir-
ing cost and maximizing adaptive value,” a mechanism that
might have also led to the small-world properties of human brain
network, including high clustering and high global efficiency
(Achard and Bullmore, 2007; Bullmore and Sporns, 2012).

How brain systems supporting the specialization of functions
interact with each other remains an open question (Bishop, 2013;
Cai et al., 2013). Insight into these interactions may suggest how
specialization arises. Specifically, an open question about hemi-
spheric specialization concerns how distinct processing domains
are controlled. Is there an integrated control system that interacts
with lateralized systems across both hemispheres? Or does the
human brain have multiple control systems that are specialized
within the separate hemispheres?

Recent studies suggest that the frontoparietal control network
(FPN) might flexibly couple with either the default network or
the attention network (Vincent et al., 2008; Spreng et al., 2010),
two antagonistic systems (Fox et al., 2005; Fransson, 2005) hy-
pothesized by some to support internally and externally directed
cognition (Buckner et al., 2008; Andrews-Hanna, 2012). The role
of FPN is particularly intriguing as it is suggested to be an evolu-
tionarily novel (Mantini et al., 2013) or expanded (Buckner and
Krienen, 2013) network in humans. Studies examining func-
tional connectivity have observed that the FPN is asymmetrically
organized (e.g., Habas et al., 2009).

Characterizing the lateralized functional organization of the
FPN may thus provide important insights into understanding the
functional lateralization more broadly. One possible arrange-
ment might be for networks involved in cognitive control to be-
come functionally specialized between the two hemispheres by
differentially interacting with separate networks. This hypothesis
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leads to a counterintuitive prediction:
functionally dissociable left-lateralized
and right-lateralized portions of the FPN
may each contribute to a different set of
lateralized functions through how they in-
teract with distinct networks. This possi-
bility suggests a specific mechanism by
which lateralized function may arise. The
idea is that lateralized function may arise
by how specific regions, and networks, are
embedded within broader distributed ar-
rangements of networks in addition to
more local specialization within the re-
gions and networks themselves.

To explore these questions, we quanti-
fied hemispheric specialization across the
entire brain in the same individuals, en-
abling the investigation of interactions be-
tween asymmetrically organized networks.

Materials and Methods
Participants. Data were acquired as part of the
Brain Genomics Superstruct Project with in-
formed consent. Participants were enrolled by
multiple local laboratories all acquiring similar
data on four matched 3-Tesla MRI scanners
(one at Harvard and three at the Massachusetts
General Hospital). Two datasets with a total of
1006 young healthy participants were used in
the present study. The first dataset consisted of
1000 individuals (mean age 21.3 � 3.1 years;
42.7% male; 90.9% right-handed); each per-
formed one or two resting-state fMRI runs (6
m 12 s per run, mean � 1.7 � 0.46 runs) during
eyes open rest. A total of 1000 subjects were
divided into two independent subsamples that
were matched for age, sex, and MRI scanner
(n � 500 for each; labeled as the Discovery and
Replication samples). The second dataset was
acquired from 55 subjects (mean age 21.1 � 2.7
years; 45.5% male; 72.7% right-handed, 49
subjects were included in the first dataset) who
performed a semantic classification task (Des-
mond et al., 1995). Among the 1006 partici-
pants, 593 were scanned at Harvard and 413
were scanned at Massachusetts General Hospi-
tal (269, 124, and 20 subjects were scanned
with these three scanners, respectively). These
data have been reported previously (Buckner et
al., 2011; Yeo et al., 2011; Choi et al., 2012;
Wang et al., 2013).

Resting-state fMRI data acquisition and pre-
processing. Resting-state fMRI data were col-
lected on four matched 3T Tim Trio scanners.
These scanners were matched in type (Siemens
Tim Trio), coil (12-channel phased-array head
coil), and run with identical sequences. Images were acquired using a
gradient-echo echo-planar pulse sequence sensitive to BOLD contrast
(TR � 3000 ms, TE � 30 ms, flip angle � 85 o, 3 mm � 3 mm � 3 mm
voxels, FOV � 216 and 47 slices collected with interleaved acquisition
with no gap between slices). Whole-brain coverage included the entire
cerebellum. Subjects were instructed to stay awake, keep their eyes open,
and minimize head movement; no other task instruction was provided.

Resting-state fMRI data were processed using previously described
procedures (Buckner et al., 2011; Yeo et al., 2011) that were adapted from
Fox et al. (2005) and Van Dijk et al. (2010). The following steps were
performed: (1) slice timing correction (SPM2, Wellcome Department of

Cognitive Neurology, London); (2) rigid body correction for head mo-
tion with the FSL package (Jenkinson et al., 2002; Smith et al., 2004); (3)
normalization for global mean signal intensity across runs; and (4) low-
pass temporal filtering, head motion regression, and ventricular and
white matter signal regression. Whole-brain signal regression was also
included in the processing stream, which can improve the correction of
motion related artifacts (Satterthwaite et al., 2013; Yan et al., 2013). All
subjects included in this study had met the quality control criterion of
slice-based temporal signal-to-noise ratio �100 (Van Dijk et al., 2012).
Head motion is an important issue in resting-state fMRI data processing,
which not only causes artifacts but can also reflect a neurobiological trait
effect (Zeng et al., 2014). In the present study, we did not remove the

Figure 1. Degree of within-hemispheric connectivity and cross-hemispheric connectivity estimated in 1000 healthy subjects.
The maps were based on the correlation threshold of 0.25. The difference map (the third row) indicates that within-hemispheric
connectivity is much stronger than cross-hemispheric connectivity in the association areas.

Figure 2. Functional autonomy, defined as the difference between within- and cross-hemispheric connectivity, is displayed for
the Discovery (N � 500) and Replication (N � 500) samples. Each individual brain was registered nonlinearly to the FreeSurfer
surface template, which has 10,242 vertices in each hemisphere. Autonomy indices were computed at each vertex by subtracting
the degree of cross-hemisphere connectivity from within-hemisphere connectivity (see Eq. 1) The connectivity degree was nor-
malized by the total number of vertices in each hemisphere; therefore, the AI is denoted as a percentage. Regions with higher
within-hemisphere connectivity than cross-hemisphere connectivity are shown in warm colors. Regions with higher cross-
hemispheric connectivity are shown in cold colors. In the left hemisphere, strong autonomy was observed in inferior prefrontal and
temporal regions overlapping with traditional language processing regions (see arrows). In the right hemisphere, strong auton-
omy was observed in lateral frontal, insula, and angular gyrus regions that are associated with attention (see arrows). Minimal
autonomy was found in the sensorimotor, auditory, and visual cortices. The patterns of hemispheric autonomy largely replicate
between the Discovery and Replication samples and are insensitive to the selection of correlation threshold.
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image frames based on head motion because our recent exploration in-
dicated that the data scrubbing might cause inflated connectivity esti-
mates in specific regions (Zeng et al., 2014).

The structural data were processed using the FreeSurfer version 4.5.0
software package as described by Yeo et al. (2011). The structural and
functional images were aligned using boundary-based registration
(Greve and Fischl, 2009) within the FsFast software package (http://surfer.
nmr.mgh.harvard.edu/fswiki/FsFast). The resting-state BOLD fMRI
data were aligned to a spherical coordinate system via sampling from the
cortical ribbon in a single interpolation (Yeo et al., 2011).

The cerebral signal and cerebellar signal were aligned to the FreeSurfer
fsaverage5 surface and volumetric templates using a hybrid surface- and
volume-based approach (Buckner et al., 2011). The cerebral cortex was
modeled as a surface as described by Yeo et al. (2011), and the cerebellum
was aligned using nonlinear volumetric registration as described by
Buckner et al. (2011). The surface template of the cerebral cortex (Free-
Surfer fsaverage5) consists of 10,242 vertices in each hemisphere. The
volumetric template has 2 mm isotropic resolution and consists of 14,888
voxels in the left cerebellar hemisphere and 15,250 voxels in the right
cerebellar hemisphere.

Hemispheric Autonomy Index (AI). Functional connectivity was esti-
mated based on the BOLD measures of resting state brain activity ac-
quired by fMRI (Biswal et al., 1995; Fox and Raichle, 2007; for recent
discussion of the technique and its limitations, see Buckner et al., 2013
and Murphy et al., 2013). To compute the AI in the cerebral cortex, each
vertex on the brain surface was taken as an ROI. To compute the AI in the
cerebellum, each voxel in the cerebellum mask was defined as an ROI. The
quantification of cerebellar AI was independent of the cerebral cortex.

For each seed ROI, the degree of within-hemisphere connectivity and
cross-hemisphere connectivity was first computed by summing up the
number of vertices (or voxels) correlated to the seed in the ipsilateral
hemisphere and in the contralateral hemisphere, respectively (see Fig. 1).
The degree of within- and cross-hemisphere connectivity was then normal-
ized by the total number of vertices (or voxels) in the corresponding hemi-
sphere. This normalization accounts for the influence of potential brain size
asymmetry between two hemispheres. AI was calculated as the difference
between the normalized within-hemisphere connectivity and the normal-
ized cross-hemisphere connectivity according to Equation 1 as follows:

AI � Ni/Hi � Nc/Hc (1)

where Ni and Nc are the numbers of vertices (or voxels) correlated to the
seed in the ipsi-lateral hemisphere and contralateral hemisphere, respec-
tively. Hi and Hc are the total number of vertices (or voxels) in the
ipsilateral and contralateral hemisphere, respectively. AI was computed
for each vertex (or voxel) in the brain. To estimate the specialization of
specific functional networks, AI was then averaged within the boundary
of each network.

Estimating language lateralization. Fifty-five subjects each performed
three task-based fMRI runs of an abstract/concrete semantic classifica-
tion task (Demb et al., 1995; Desmond et al., 1995). Previous studies have
indicated that semantic processing of single words, either visually or
aurally presented, activates brain regions that are strongly lateralized. Fur-
thermore, lateralization of the task-evoked responses have demonstrated a
significant correlation with language lateralization determined by the
WADA test (Desmond et al., 1995; Binder et al., 1996), suggesting that this
single-word processing task may reflect language lateralization to some ex-
tent, although it should be emphasized that this task targets only one com-
ponent of language processing and not language function as a whole.

Our design manipulated familiarity to isolate regions specifically in-
volved in controlled semantic retrieval. During a prescan familiarization
phase, subjects repeatedly classified the same four words (two abstract
and two concrete) for five repetitions. During the scan, each run con-
sisted of three 30 s “novel” blocks of task, three 30 s “familiar” blocks, and
seven 24 s blocks of passive visual fixation. In each novel block, 10 novel
words (five concrete and five abstract words in random order) were
presented for 2 s with 1 s interstimulus interval. In the familiar block, the
four practiced words were presented repeatedly. The subject’s task was to
indicate whether each word was concrete or abstract independent of

novelty. In total, 60 novel words and 4 familiar words were used. Partic-
ipants were instructed to respond by pressing a single key with the index
finger of each hand. The MRI data acquisition parameters were identical
to the resting-state scan described above, except that 124 time points
were acquired in each task run. Data were first analyzed using the general
linear model in participants’ native fMRI space. Brain regions participat-
ing in controlled semantic retrieval were isolated by contrasting the novel
versus familiar conditions. The language laterality index was calculated
for each individual based on the asymmetric activations in two hemi-
spheres using the approach of Binder et al. (1996).

Definition of the functional networks. The cerebral cortex and the cere-
bellum have been parcellated into seven functional networks based on
the 1000 subjects using a clustering approach (Yeo et al., 2011, 2013;
Power et al., 2011). Cortical networks were defined as sets of cortical
regions with similar profiles of corticocortical functional connectivity.
The connectivity profile of a cortical region was defined as its functional
coupling to 1175 ROI vertices. The 1175 ROI vertices were uniformly
sampled in FreeSurfer surface space and consisted of single vertices
spaced �16 mm apart. For each subject, the Pearson’s product moment
correlation was computed between the fMRI time series at each spatial
location (18,715 vertices) and the 1175 ROI vertices. Each spatial loca-
tion is therefore characterized by its functional coupling to the 1175 ROI
vertices. A clustering algorithm was then applied to estimate networks of
cortical regions with similar connectivity profiles.

The cerebellar networks were then defined based on the cerebral net-
works. Each voxel in the cerebellum was labeled as a member of a partic-

a b

c

Figure 3. Intrinsic hemispheric specialization during rest predicts language lateralization
during task. The regions showing strongest autonomy in the 1000 subjects (a) and the regions
activated by a semantic decision task (modified from Desmond et al., 1995) in 55 subjects (b) are
plotted on the brain surface, with boundaries of functional connectivity networks from Yeo et al.
(2011), illustrated by black lines (for the networks, also see Fig. 5). The regions showing strong
autonomy (�6%) in the left hemisphere were taken as a mask. The AI within the mask was
then averaged for each subject. A task-based language lateralization index was calculated for
each subject based on the asymmetric activation in the two hemispheres. A significant correla-
tion (Spearman rank correlation r � 0.47, p � 0.001) was found between the AI and language
lateralization (c), indicating that intrinsic hemispheric specialization was associated with lan-
guage lateralization during task.
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ular network if it had maximal functional
correlation with the cerebral network (Buckner et
al., 2011). Using the cerebellar networks defined
based on cerebrocerebellar connections al-
lowed us to explore whether the cerebellar
regions connected to the cerebral networks
possess hemispheric specialization patterns
parallel to those observed in cerebral regions.
However, it should be noted that the cerebellar
cortex, particularly the intermediate zone, is
the target of substantial ascending pathways
that originate in the spinal cord. The cerebellar
network definition based on cerebrocerebellar
connections did not include these ascending
pathways, and some important features of cer-
ebellar organization might have been missed.
This incompleteness and other limitations of
the cerebellar parcellation are discussed in
Buckner et al. (2011). Nonetheless, it serves as
an adequate parcellation of the cerebellum in
relation to cerebral zones to be informative for
the present analyses.

Correlation to evolutionary cortical expan-
sion. The map of regional evolutionary cortical
expansion between an adult macaque and the
average human adult PALS-B12 atlas was pro-
vided by Van Essen and Dierker (2007) and
Hill et al. (2010a). Thismapprojectsdataontothe
right hemisphere, but the estimate can be consid-
ered representative of the two hemispheres.

To produce Figure 9, data in the right hemisphere were projected to the
Conte69 164k_fs_LR mesh (Van Essen et al., 2012) (http://sumsdb.wustl.
edu/sums/directory.do?id�8291494&dir_name�CONTE69). The data
were extracted using the Caret Surface Statistics Toolbox for the correla-
tion analysis. The absolute expansion ratio was normalized by taking the
logarithm and subtracted with a constant. Correlations between AI and
cortical expansion (see Fig. 9) were computed at the whole hemisphere
level. To test the potential impact of spatial dependence between neigh-
boring vertices on these correlation analyses, we performed a repeated
(n � 1000) random sampling of 7% of the vertices and computed the
correlation coefficient on the subsets of the vertices. For each subset, the
Durbin–Watson test was performed to estimate the spatial dependence
(DW � 2). Correlation coefficients were averaged across the 1000 itera-
tions. We also computed the Type I error rate of this correlation using the
permutation test.

Results
Prominent hemispheric specialization of association cortices
To quantify functional specialization of the human brain, a func-
tional AI, defined as the difference between the degree of within-
hemispheric and cross-hemispheric functional connectivity, was
computed at each vertex of the brain surface. Some regions showed
particularly strong difference between within-hemispheric and
cross-hemispheric connectivity (Fig. 1). For example, based on a
correlation threshold of 0.25, a vertex in the left inferior parietal
lobule coupled to �1900 vertices within the left hemispheric but
only to 1300 vertices in the right hemisphere (each hemisphere has
10,242 vertices). This difference between within-hemispheric and
cross-hemispheric connectivity degree is 6% of the entire hemi-
sphere and will correspond to a strong AI value of 6%.

AI was first calculated in the Discovery sample (N � 500) and
then replicated in the independent Replication sample (N �
500). The specialization distribution maps derived from these
two samples were highly correlated (Spearman rank correlation
r � 0.99, p � 0.001 for both hemispheres). Strong hemispheric
specialization was observed in the association cortices, including
the lateral prefrontal, inferior parietal, and temporal regions (Fig.

2). Visual, somatosensory, and motor cortices exhibited minimal
hemispheric specialization.

Of most interest, hemispheric specialization in the two hemi-
spheres demonstrated different patterns. In the left hemisphere,
strong specialization was observed in inferior prefrontal and tem-
poral regions overlapping the default network and regions tradi-
tionally associated with language. In the right hemisphere, strong
specialization was observed in the insula, angular gyrus and su-
pramarginal gyrus that overlap with regions involved in atten-
tion. A third pattern was also noted: portions of the prefrontal
cortex and inferior parietal lobule that overlap with regions im-
plicated in cognitive control (e.g., the FPN) showed strong spe-
cialization in both hemispheres.

Hemispheric specialization estimated during rest predicts
language lateralization during task
To explore the relation between hemispheric specialization esti-
mated by AI and traditional task-based estimates of lateraliza-
tion, we examined task data from 55 subjects. The task design
manipulated familiarity to isolate regions specifically involved in
controlled semantic retrieval (see Materials and Methods). Task-
based language lateralization was calculated for each subject us-
ing the approach previously described (Binder et al., 1996).

The AI of each subject was normalized and averaged within a
mask of the most specialized regions derived from the 1000 sub-
jects (Fig. 3a). A significant correlation (Spearman rank correla-
tion r � 0.47, p � 0.001) was found between left hemisphere AI
and the language lateralization index (Fig. 3), indicating a mod-
erate relation between intrinsic hemispheric specialization and
language lateralization. Although the correlation was substantially
driven by the subjects with atypical language lateralization (Spear-
man rank correlation r � 0.30, p � 0.05 if these subjects were ex-
cluded), the individuals with the lowest left hemisphere AI all
demonstrated bilateral or reversed language lateralization during the
language task. These atypical lateralization patterns were manifested
both in the cerebral cortex and the cerebellum (Fig. 4).

a b c d

e f      g h

Figure 4. Regions activated in the semantic decision task are displayed for 8 subjects to elaborate the results in Figure 3. The left
hemisphere autonomy and language lateralization indices are displayed at the upper left and right corner of each panel, respectively. Two
subjects with strong left hemisphere autonomy show language activation along the left inferior prefrontal gyrus, as well as in the right Crus
I/II of cerebellum (a, b). Six subjects with the lowest left hemisphere autonomy either show bilateral task activation in both cerebrum and
cerebellum (c, e, f, g) or lateralized activation in the right inferior prefrontal cortex and the left cerebellum (d, h).
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Frontoparietal control network is specialized in
both hemispheres
Using the estimates of hemispheric autonomy, the relative spe-
cialization of networks was assessed. For this analysis, the cerebral
cortex was first parcellated into seven functional networks using a
clustering approach previously described (Yeo et al., 2011), in-
cluding the FPN, ventral and dorsal attention, default, limbic,
sensorimotor, and visual networks. Specialization of a network
was then estimated by averaging AI within the boundary of the
network in each hemisphere.

The degree of specialization significantly differed across func-
tional networks. A ranking of the networks according to AI indi-
cated that the default network and FPN were among the most
specialized in the left hemisphere, whereas visual, ventral atten-
tion, and sensorimotor networks were least specialized (Fig. 5a).
Functional specialization in the right hemisphere exhibited a differ-
ent pattern. Whereas the FPN was again among the most specialized
networks, the ventral attention and dorsal attention networks dem-
onstrated particularly strong specialization in the right hemisphere
(Fig. 5b). The heterogeneity of specialization across networks was
supported by the significant difference between almost any two net-
works (Wilcoxon signed rank test, p � 0.0001 for all comparisons
except that p � 0.3 for the comparison between dorsal and ventral
attention networks in the right hemisphere).

Parallel hemispheric specialization in the cerebellum and
cerebral cortex
We have previously demonstrated that the cerebellum possesses
an approximately homotopic map of the cerebral cortex, includ-
ing the prominent asymmetries of the association cortex (Buck-
ner et al., 2011; Wang et al., 2013). Therefore, the gradient of
hemispheric specialization observed in the cerebral networks
might be expected in the cerebellum. To test this hypothesis, the
AI was estimated in the cerebellum (14,888 voxels in the left
cerebellar hemisphere and 15,250 voxels in the right cerebellar
hemisphere) based on within- and cross-hemispheric functional

coupling independent of the cerebral cortex (see Materials and
Methods). Regions with the strongest specialization were local-
ized mainly in the posterior Crus I/II in the right hemisphere, and
the lobules VI, VIIB, anterior portion of Crus I/II in the left
hemisphere (Fig. 6). Functional autonomy was then quantified in
seven cerebellar networks described by Buckner et al. (2011). In
the right cerebellar hemisphere, strong autonomy was observed
in regions linked to the default network and the FPN. In the left
cerebellar hemisphere, the strongest autonomy was found in re-
gions linked to the FPN and attention networks. The results are
consistent with the autonomy distribution across cerebral net-
works but in the contralateral hemisphere (Fig. 7).

These results indicated that hemispheric specialization in the
cerebellum parallels that of the cerebral cortex. The consistent
ranking pattern observed in the cerebellum, but in the contralat-
eral hemisphere, also suggests that the distribution is unlikely the
result of technical confounds, including misalignment. Technical
artifacts and template misalignments between the hemispheres
are not expected to be the same across the cerebrum and cerebel-
lum (Wang et al., 2013).

Specialization of frontoparietal control network is coupled
with different networks in the two hemispheres
To investigate the relation between the FPN, which was special-
ized in both hemispheres, and the other networks, AI values for
each of the seven networks were correlated across the 1000
subjects (Fig. 8). The idea behind this analysis is that individual
differences in network coupling strength might provide informa-
tion about how the distinct networks are interacting. In the left
hemisphere, the strongest correlation was found between the AI
of FPN and the default network (Spearman rank correlation r �
0.42), whereas AI of FPN and attention networks (dorsal atten-
tion and ventral attention) showed weaker correlation (Spear-
man rank correlation r � 0.37 between FPN and dorsal attention
network; ANCOVA, p � 0.005 for the comparison of regression
slopes; Spearman rank correlation r � 0.14 between FPN and

a b

Figure 5. Hemispheric specialization was quantified across seven cerebral networks in the left (a) and right (b) hemispheres. The analysis was based on our prior parcellation of the cerebrum (Yeo
et al., 2011) into seven functional networks (a & b; top right), namely, the FPN, vATN, dATN, DN, limbic (LMB), sensorimotor (Mot), and visual (Vis) networks. The AI values were plotted on the brain
surface (a & b; top left) with boundaries of functional connectivity networks illustrated by black lines. The autonomy indices from 1000 subjects were averaged within each network within each
hemisphere. The bars illustrate mean AI in these networks with SE. Strong specialization was found in the left DN and FPN. In the right hemisphere, strong specialization was also seen in the FPN,
along with the attention networks.
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ventral attention network; p � 0.001 for the comparison of re-
gression slopes). However, in the right hemisphere, the AI re-
vealed the strongest correlation between the FPN and both
attention networks (Spearman rank correlation r � 0.47 with the
dorsal attention and Spearman rank correlation r � 0.44 with the
ventral attention networks) but a slightly weaker correlation with
the default network (Spearman rank correlation r � 0.36 with the
default network; ANCOVA, p � 0.005 for both comparisons of
the regression slopes). These correlation patterns support the
hypothesis that the FPN is differentially specialized in the two

hemispheres being strongly coupled with the default network in
the left hemisphere and strongly coupled with attention networks
in the right hemisphere.

Hemispheric specialization is spatially correlated with
estimated evolutionary cortical expansion
To explore whether regions displaying hemispheric specializa-
tion are disproportionately expanded in humans compared with
nonhuman primates with smaller brains, we directly compared
the specialization measured by AI with a map of estimated re-

Figure 6. A map of intrinsic hemispheric autonomy in the human cerebellum based on 1000 individuals. Individual cerebellar volumes were nonlinearly registered to the FreeSurfer template
(voxel size: 2 mm � 2 mm � 2 mm; 14,888 voxels in left hemisphere and 15,250 voxels in right hemisphere). Autonomy was calculated based on within- and cross-hemispheric functional coupling
within the cerebellum, independent of the cerebral cortex. Regions with strongest autonomy were localized mainly in the right posterior Crus I/II (yellow), as well as the left lobules VI, VIIB, and the
left anterior portion of Crus I/II (blue). The sections display coronal (left), sagittal (middle), and transverse (right) images. Major fissures are demarcated on the left, and lobules are labeled on the right
(Buckner et al., 2011; Wang et al., 2013). PF, Primary fissure; SPF, superior posterior fissure; HF, horizontal fissure; AF, ansoparamedian fissure; PbF, prepyramidal/prebiventer fissure; IbF,
intrabiventer fissure; SF, secondary fissure. IcF, intraculminate fissure; PLF, posterolateral fissure; PrcF, preculminate fissure; A, anterior; P, posterior; L, left; R, right; S, superior; I, inferior. The
coordinates at the bottom right of each panel represent the section level in the MNI atlas space.
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gional evolutionary expansion derived from the comparison be-
tween macaques and humans (Van Essen and Dierker, 2007; Hill et
al., 2010a) (http://sumsdb.wustl.edu/sums/directory.do?id�7601585).
A moderate correlation (Spearman rank correlation r � 0.49, p �
0.001) between hemispheric specialization and evolutionary cor-
tical expansion was observed (Fig. 9).

Control analyses
To investigate how much the hemispheric specialization pattern
shown in Figure 2 is dependent on the selection of correlation
thresholds, we computed the specialization maps based on 10
different thresholds (from r � 0.1 to r � 0.55 in 0.05 increments).
It is expected that correlation threshold will affect the absolute
values of connectivity degree (i.e., number of vertices exceeding a
given threshold will necessarily change); however, the impact of
threshold is similar on within-hemisphere and cross-hemisphere
connectivity. Therefore, the absolute AI values decrease with
higher threshold, but the spatial distribution of AI remains relatively
stable. The normalized specialization maps (z-transformed) are
shown in Figure 10a. The Spearman rank correlation coefficients
among these 10 maps range from 0.73 to 0.99, indicating that the
distribution of specialization is relatively insensitive to the selec-

tion of thresholds. Similarly, we computed the cerebellar special-
ization based on five different thresholds (from r � 0.1 to r � 0.3
in 0.05 increments). The spatial distribution of the cerebellar
specialization was also found to be relatively insensitive to the
selection of correlation threshold (Fig. 10b).

To investigate how much the specialization pattern shown in
Figure 2 is influenced by the folding variability, we computed the
intersubject variability of sulcal depth, which could serve as a
proxy of cortical folding patterns. The sulcal depth variability was
then used as a nuisance regressor. We found that the sulcal depth
variability partially overlapped with the specialization map in
frontal and parietal areas and had a modest correlation with spe-
cialization (Spearman rank correlation r � 0.26). However, the
specialization distribution was not dominated by sulcal depth
variability. After regressing out sulcal depth variability, the spe-
cialization map only changed slightly (mainly in lateral parietal
regions). The ranking across different functional networks re-
mained unchanged.

To explore the possibility that the correlation patterns ob-
served in Figure 8 were confounded by the anatomical adjacency
among networks, the network boundaries were eroded by 6 mm;
thus, a set of core regions were derived for the FPN, default and

a b

Figure 7. Functional autonomy was quantified in seven cerebellar networks in the right hemisphere (a) and left hemisphere (b). The computation of cerebellar specialization was independent
of the cerebral cortex. The cerebellar segmentation based on coupling to cerebral networks from Buckner et al. (2011) is displayed in the bottom row. Each color in the cerebellar segmentation
indicates which cerebral network shows the greatest coupling. In the right cerebellar hemisphere, strong autonomy was observed in regions linked to the DN and FPN. In the left cerebellar
hemisphere, strongest autonomy was found in regions linked to the FPN and attention networks. The results are highly consistent with the autonomy distribution across cerebral networks but in the
contralateral hemisphere (for a comparison, see Fig. 5). Note that the visual signal from the cerebrum was regressed from the cerebellum to mitigate partial volume effects.
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attention networks that would be less af-
fected by spatial blurring at the borders of
networks. The correlation analyses were
then repeated based on these core regions
that were well separated from each other
(at least 12 mm apart because each net-
work was eroded by 6 mm). The correla-
tion patterns in the left hemisphere and
right hemisphere preserved: AI in the FPN
was more strongly coupled with the de-
fault network than attention networks
(ANCOVA, p � 0.05 and p � 0.001 for the
comparison of regression slopes, respec-
tively) in the left hemisphere but more
strongly coupled with the attention networks
than the default network (ANCOVA, both
p � 0.001 for the comparison of regres-
sion slopes) in the right hemisphere. Al-
though this analysis cannot completely
rule out the possibility of asymmetric spa-
tial correlation contributing to our obser-
vations, it suggests that a confounding
effect, if present, is subtle and our results
are unlikely a simple product of spatial ad-
jacencies of the networks.

To investigate how much the between-
network correlations of AI values shown
in Figure 8 are influenced by other meth-
odological confounds, such as individual
differences in the spatial pattern of signal-
to-noise ratio (SNR), we computed the
SNR distribution for each subject. Tem-
poral SNR of the motion-corrected fMRI
time series was computed for each voxel in
the subject’s native volumetric space by
averaging the signal intensity across the
whole run and dividing it by the SD over
time. The SNR values were then projected
to the standard surface space (FreeSurfer
fsaverage5) and averaged within each net-
work parcellation. The between-network
correlations of AI values shown in Figure
8 were then recalculated with the SNR val-
ues controlled for using partial correla-
tion. We found that the correlations of AI
remained almost unchanged. In the left
hemisphere, the partial correlation be-
tween the mean AI of FPN and that of
default and language (DN), dorsal atten-
tion (dATN), and ventral attention
(vATN) was 0.41, 0.37, and 0.15, respec-
tively. In the right hemisphere, the partial correlation between the
mean AI of FPN and that of DN, dATN, and vATN was 0.37, 0.47,
and 0.44, respectively.

To estimate the Type I error rate of the correlation between
the autonomy map and the evolutionary cortical expansion map
shown in Figure 9, we randomly shuffled vertices of the down-
sampled autonomy map and reblurred the maps on the high-
resolution surface. The correlation with the evolutionary cortical
expansion map was then computed. After 1000 permutations,
none of the correlation values was larger than 0.49, the correla-
tion between the original autonomy map and the cortical expan-
sion map. Type I error rate for the null hypothesis yielded by this

1000 permutations is likely therefore at least �0.001, although
this should only be considered an approximation.

Discussion
Hemispheric specialization has been studied extensively because
of its important implications to understanding human brain
organization, development, and various neurological diseases (Mil-
ner, 1971; Gazzaniga, 2000). The present study estimated specializa-
tion across the full cortical mantle based on intrinsic functional
connectivity measured at rest. Unlike past approaches that have in-
vestigated the asymmetric representation of functions between two
hemispheres, here we focus on properties of functional connectivity
that may support interactions among different functionally lateral-

a b

Figure 8. Specialization of the FPN is preferentially coupled with different networks in two hemispheres. In the left hemisphere,
a significant correlation was found between the autonomy in the FPN and the default network (Spearman rank correlation r �
0.42), but weaker correlations between the FPN and the attention networks (r � 0.37 with dATN and r � 0.14 with vATN;
ANCOVA, p � 0.005 and p � 0.001 for the comparison of regression slopes, respectively). In the right hemisphere, autonomy in
the FPN showed strongest correlation with the attention network (r � 0.47 with dATN and r � 0.44 with vATN) but a weaker
correlation with the default network (r � 0.36; ANCOVA, p � 0.005 for both comparisons of the regression slopes). The different
correlation patterns in two hemispheres suggest that subdivisions of FPN are specialized in each hemisphere.
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ized brain systems. The gradient of specialization across different
functional regions revealed that higher-order association cortex ex-
hibits the most prominent specialization, whereas sensorimotor re-
gions possess weaker specialization. This gradient of specialization
was mirrored in the cerebellum.

An intriguing finding that may have important implications
for understanding mechanisms of lateralization is that the FPN is
strongly specialized within both hemispheres but is preferentially
coupled to the default network in the left hemisphere and to the
attention networks in the right hemisphere.

Heteromodal association cortex shows stronger asymmetric
cortical specialization than unimodal cortices
The present results demonstrate that hemispheric specialization
has a nonuniform distribution across the cerebral cortex. Special-

ization is strongest in the heteromodal as-
sociation regions that are estimated to
preferentially connect through relatively
small callosal fibers (Aboitiz et al., 1992)
and are also characterized by preferential
long-range functional connectivity (Sep-
ulcre et al., 2010). Pathways for associative
processing are critical for achieving be-
havioral flexibility (Mesulam, 1998) but
require integration among brain regions
that are far apart (Goldman-Rakic, 1988;
Mesulam, 1998; Buckner and Krienen,
2013). Given that cross-hemispheric
transfer incurs extra processing costs, spe-
cialization of these circuits may bring
advantages for time-critical tasks. By
contrast, sensorimotor systems in each
hemisphere consist of local, modular pro-
cessing circuits often connected to mid-
line or mirrored body representations and
involve interactions between the two
hemispheres. Although dominance of
motor functions, such as handedness, is
well recognized and has been related to
anatomical and language lateralization
(Amunts et al., 1996), functional connec-
tivity in motor regions is relatively sym-
metric compared with association areas
(Wang et al., 2013; Wey et al., 2013). We
recently investigated the relation between
connectivity laterality and handedness us-
ing 52 pairs of well-matched subjects
(Wang et al., 2013). Whereas functional
connectivity in networks of regions linked
to language and attention differed signifi-
cantly between left-handed and right-
handed subjects, connectivity in motor
regions did not show a significant hand-
edness effect (Wang et al., 2013). It is un-
clear whether resting-state functional
connectivity is insensitive to the motor
connections related to handedness or
whether bilateral motor coordination is a
more prominent functional feature than
handedness. Future investigation on spe-
cific motor connectivity characteristics
contributing to handedness is warranted.

Potential evolutionary and developmental accounts of
hemispheric specialization
Asymmetry is a prominent organizational feature of the human
brain but also exists in nonhuman brains (Zilles et al., 1996;
Cantalupo and Hopkins, 2001). The evolutionary advantages of
hemispheric specialization have been long debated (Previc, 1991;
Vallortigara and Rogers, 2005). The current study revealed
prominent hemispheric specialization in the heteromodal asso-
ciation cortex, regions that are estimated to have undergone dra-
matic expansion during hominin evolution (Van Essen and
Dierker, 2007; Preuss, 2011; Sherwood et al., 2012; Buckner and
Krienen, 2013). The significant correlation among hemispheric
specialization and evolutionary expansion may suggest that
hemispheric specialization is directly linked to evolutionary cor-
tical expansion. Further insight might arise from developmental

a

b

c

Figure 9. Comparison of hemispheric specialization (a) and evolutionary cortical expansion (b). Evolutionary cortical expansion was
estimatedfromthecomparisonbetweenanadultmacaqueandtheaveragehumanadultPALS-B12atlas.DatawereprovidedbyVanEssen
and Dierker (2007) and Hill et al. (2010a). Results are displayed for the right hemisphere. At the whole-brain level, hemispheric specializa-
tion tracks evolutionary cortical expansion (Spearman rank correlation r � 0.49, p � 0.001). The correlation between AI and cortical
expansion is shown in the scatter plot, where each 100th vertex on the brain surface is represented by a small circle (c).
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studies of connectivity. In humans, asso-
ciation cortex demonstrates the most sig-
nificant postnatal enlargement (Hill et al.,
2010a) at times when hemispheric spe-
cialization is thought to be incomplete.
Longitudinal studies have revealed that
language lateralization increases gradually
during development (Holland et al., 2001;
Szaflarski et al., 2006).

A network perspective of
hemispheric specialization
A recent development in the research of
hemispheric specialization is that func-
tional lateralization may be inferred from
the asymmetry in intrinsic functional
connectivity (Liu et al., 2009; Tomasi and
Volkow, 2012; Gotts et al., 2013; Wang et
al., 2013). A technical challenge faced by
these approaches is their reliance on iden-
tifying homotopic regions in two hemi-
spheres, which is inevitably confounded
by anatomical asymmetry of the human
brain (Stark et al., 2008). Anatomical
asymmetry may span across multiple
scales, from overall morphology, cortical
folding pattern (Hill et al., 2010b), surface
area (White et al., 1994), and gray matter
thickness (Luders et al., 2006) to microscopi-
cally measured cytoarchitecture (Amunts et
al., 1999) and the organization of microcir-
cuitry (Galuske et al., 2000). The present
study offers a novel perspective based on
the composition of within- and cross-
hemispheric connectivity. In this context,
specialization is indirectly reflected by the
imbalance between within- and cross-
hemispheric interactions instead of the
direct contrast between homotopic re-
gions; thus, the method may be less sensi-
tive to assumption of bilateral anatomic
symmetry.

Subdivisions of the frontoparietal control network in both
hemispheres are specialized
An intriguing finding of the present study is that subdivisions of
the FPN in both hemispheres are specialized but with distinct
coupling patterns in the two hemispheres. The FPN is a distrib-
uted association network that might be preferentially expanded
in the human (Buckner and Krienen, 2013; Mantini et al., 2013).
The network is anatomically juxtaposed between multiple other
networks that process preferentially external channels of infor-
mation (e.g., the dorsal attention system) or internal channels of
information (the default network) (Vincent et al., 2008; Niendam
et al., 2012; Spreng et al., 2013). The FPN is active during a wide
range of controlled processing tasks (Ramnani and Owen, 2004;
e.g., Botvinick et al., 2004) consistent with models that suggest
networks involving prefrontal cortex may bias processing of
other networks (Miller and Cohen, 2001). Spreng et al. (2013)
recently demonstrated that the FPN is differentially coupled with
the default network and attention networks depending on task
demands, suggesting that the FPN plays a cooperative role in
various cognitive operations.

A specialized executive control unit positioned in the same
hemisphere as the controlled cognitive processes may reduce the
cost in processing time. Because various cognitive functions are
specialized in one brain hemisphere, an efficient arrangement
might be a segregated FPN with its subdivisions also specialized
in each hemisphere to support the within-hemispheric cognitive
operations. Moreover, differential interactions of the FPN and
other network in the two hemispheres may suggest a mechanism
by which functional specialization could arise. In addition to
local modifications that alter processing at the level of brain
regions, hemispheric specialization could also arise by how
homologous networks functionally interact within the context
of the distributed networks of each hemisphere. Competition and
bias to form distinct interactions between networks in the two
hemispheres may be an important factor in hemispheric
specialization.

Caveats
In this study, intrahemispheric and interhemispheric connectiv-
ity was estimated based on the resting-state fcMRI, which is a
statistical association between the low-frequency fluctuations in
the spontaneous BOLD activity from different regions. Although

a

b

Figure 10. Spatial distribution of hemispheric specialization map is insensitive to the selection of correlation threshold. Spe-
cialization maps were computed based on 10 different thresholds (from r � 0.1 to r � 0.55 at the increment of 0.05). The
Spearman rank correlations among these maps range from 0.73 to 0.99, indicating that the specialization patterns are relatively
insensitive to the selection of thresholds. The specialization maps corresponding to three thresholds were normalized (z-
transformed) and displayed (a). Spatial distribution of hemispheric specialization in the cerebellum is also insensitive to the
selection of correlation threshold. Specialization maps were computed based on five different thresholds (from r � 0.1 to r � 0.3
at the increment of 0.05). The specialization maps were normalized (z-transformed) and displayed (b).
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constrained by anatomical pathway (Honey et al., 2009; Lu et al.,
2011), resting-state functional coupling is mediated by monosyn-
aptic or polysynaptic anatomic connections (Buckner et al.,
2013), changes dynamically (Hutchison et al., 2013), and is sen-
sitive to multiple confounding factors (Murphy et al., 2013).
Therefore, it should not be interpreted as a direct measure of
anatomical connectivity. Although many results of resting-state
fcMRI analyses resemble the findings of task fMRI, it has also
been shown that functional connectivity at rest can differ from
the transient coupling configurations of the active brain during
task performance (Buckner et al., 2013; Hermundstad et al.,
2013). The task modulation could affect both the intrahemi-
spheric and interhemispheric connectivities (Hermundstad et al.,
2013). The hemispheric specialization measured at rest therefore
should be interpreted with caution when comparing with the
lateralization observed during active tasks because both sponta-
neous and task-evoked activity may consist of some independent
information about the functional network property.
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